Means and Variances of Stochastic Vector Products with Applications to Random Linear Models*
نویسنده
چکیده
Applications in operations research often employ models which contain linear functions. These linear functions may have some components (coefficients and variables) which are random. (For instance, linear functions in mathematical programming often represent models of processes which exhibit randomness in resource availability, consumption rates, and activity levels.) Even when the linearity assumptions of these models is unquestioned, the effects of the randomness in the functions is of concern. Methods to accomodate, or at least estimate for a linear function the implications of randomness in its components typically make several simplifying assumptions. Unfortunately, when components are known to be random in a general, multivariate dependent fashion, concise specification of the randomness exhibited by the linear function is, at best, extremely complicated, usually requiring severe, unrealistic restrictions on the density functions of the random components. Frequent stipulations include assertion of normality, or of independence-yet, observed data, accepted collateral theory and common sense may dictate that a symmetric distribution with infinite domain limits is inappropriate, or that a dependent structure is definitely present. (For example, random resource levels may be highly correlated due to economic conditions, and nonnegative for physical reasons.) Often, an investigation is performed by discretizing the random components at point quantile levels, or by replacing the random components by their means-methods which give a deterministic "equivalent" model with constant terms, but possibly very misleading results. Outright simulation can be used, but requires considerable time investment for setup and debugging (especially for generation of dependent sequences of pseudorandom variates) and gives results with high parametric specificity and computation cost. This paper shows how to use elementary methods to estimate the mean and variance of a linear function with arbitrary multivariate randomness in its components. Expressions are given for the mean and variance and are used to make Tchebycheff-type probability statements which can accomodate and exploit stochastic dependence. Simple estimation examples are given which lead to illustrative applications with (dependent-) stochastic programming models.
منابع مشابه
Investigation of SLIM Dynamic Models Based on Vector Control for Railway Applications
Although, Single-Sided Linear Induction Motor (SLIM) utilization has increased in railway applications due to their numerous advantages in comparison to Rotational Induction Motors (RIM), there are some sophistication in their mathematical models and electrical drive. This paper focuses on the problems of SLIM modeling, with assuming end-effect on the basis of Field Oriented Control (FOC) as a ...
متن کاملAn Extension to the Economic Production Quantity Problem with Deteriorating Products Considering Random Machine Breakdown and Stochastic Repair Time
The recent advances in manufacturing systems motivate several studies to focus on Economic Production Quantity (EPQ) problem. Althuogh there are several extentions to the EPQ, this paper provides a new extension by considering some of the real world parameters like: (a) shortages in the form of partial backordering, (b) inventory can deteriorate stochastically, (c) machine can break down stocha...
متن کاملDispersive Ordering and k-out-of-n Systems
Extended Abstract. The simplest and the most common way of comparing two random variables is through their means and variances. It may happen that in some cases the median of X is larger than that of Y, while the mean of X is smaller than the mean of Y. However, this confusion will not arise if the random variables are stochastically ordered. Similarly, the same may happen if one would like to ...
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006